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Abstract. The data from the first measurement, performed at ANKE/COSY, of the unpolarized cross-
section of the reaction pd → (pp)n in the kinematics of backward elastic pd → dp scattering at proton
beam energies between 0.6 and 1.9 GeV are analyzed in a phenomenological approach. The pd → (pp)n
data and the triplet cross-section of the reaction pd → (pn)p, calculated from the pd → dp data on the
basis of the Fäldt-Wilkin extrapolation, are used here to derive the ratio ζ of the singlet production matrix
element squared to the triplet one. This ratio, defined in our earlier analysis of pd → (pn)p data in a largely
model-independent way, depends on the dynamics of the pd interaction. We find here ζ ≈ 0.02 and show
that the smallness of this value may point toward softness of the deuteron at short NN distances.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 25.10.+s Nuclear
reactions involving few-nucleon systems

1 Introduction

The structure of the lightest nuclei at short distances in
the nucleon overlap region rNN < 0.5 fm, i.e. at high rel-
ative momenta qNN ∼ 1/rNN > 0.4 GeV/c between the
nucleons, is a fundamental problem of nuclear physics. The
structure can be tested by electromagnetic probes at high
transferred momenta. However, a self-consistent picture
of electro- and photo-nuclear processes is not yet devel-
oped due to the unknown strength of the meson exchange
currents. Hadron-nucleus collisions can give important in-
dependent information. The theoretical analysis of hadron
processes is complicated by initial- and final-state inter-
actions and the excitation/de-excitation of nucleons in in-
termediate states. For instance, a large contribution of
the double pN scattering with excitation of the ∆(1232)-
resonance was found in proton-deuteron backward elastic
scattering pd → dp at ∼ 0.5 GeV [1–5]. At higher beam en-
ergies the role of heavier baryon resonances is expected to
increase. Unfortunately, these contributions are not well
controlled in theory due to the rather poor information
about the pN � NN∗and pN � N∆ amplitudes. To
some extent these effects are taken into account in the
one-pion exchange (OPE) model [1] with a virtual sub-
process pp → dπ+, but another important contribution,
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i.e. the one-nucleon exchange (ONE) amplitude, cannot
be included in this model.

To minimize these complicating effects, it was pro-
posed [6] to study the deuteron breakup reaction pd →
(pp)n in the kinematics of backward elastic pd scattering.
For low excitation energies Epp ≤ 3 MeV, the final pp pair
can be assumed to be in the 1S0 spin singlet (isotriplet)
state. This feature, in contrast to the pd → dp process,
results in a considerable suppression of the ∆- (and N∗-)
excitation amplitudes by the isospin factor 1/3 in com-
parison with the one-nucleon exchange (ONE). Recently
it was shown [7] that the same suppression factor acts for
a broad class of diagrams with isovector meson-nucleon
rescattering in the intermediate state including the exci-
tation of any baryon resonance. Furthermore, the node
in the half-off-shell pp(1S0) scattering amplitude at the
off-shell momentum q ∼ 0.4 GeV/c results in remarkable
irregularities in the spin observables and leads to a dip in
the unpolarized cross-section for the ONE mechanism [6,
8]. In the pd → dp and pd → pX processes, the node in the
deuteron S-wave is hidden by the large contribution of the
D-wave. The irregularities of the observables allow new
studies of i) the commonly used potentials of the NN in-
teraction at short distances and ii) possible contributions
from N∗-exchanges [9] and exotic three-baryon states [2].

The first data on the reaction pd → (pp)n at high beam
energies Tp = 0.6–1.9 GeV with forward emission of a fast
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proton pair of low excitation energy Epp were obtained at
ANKE/COSY [10]. Using a largely model-independent ap-
proach based on the Migdal-Watson and the Fäldt-Wilkin
FSI theory, we discuss the relative strength of the mea-
sured singlet in comparison to the triplet channel. We
present also the results of a calculation of the deuteron
breakup cross-section performed within the main mecha-
nisms of the pd → dp process [5].

2 The FSI theory

At excitation energies around 1 MeV, the pd → (pn)p
cross-section is strongly influenced by the np FSI. The re-
sulting peak is well described by the Migdal-Watson for-
mulae [11,12] which take into account the nearby poles
in the FSI triplet (t) and singlet (s) pn-scattering ampli-
tudes:

dσs,t = FSIs,t(k2)K |As,t|2. (1)

Here As,t is the production matrix element for the singlet
and triplet state, K is the kinematical factor, and FSIs,t

is the Goldberger-Watson factor [12]:

FSIs,t(k2) =
k2 + β2

s,t

k2 + α2
s,t

. (2)

Here k is the relative momentum in the pn system at the
excitation energy Enp = k2/m, where m is the nucleon
mass. The parameters α and β are determined by the
known properties of the on-shell NN scattering ampli-
tudes at low energies: αt = 0.232 fm−1, αs = −0.04 fm−1,
βt = 0.91 fm−1, βs = 0.79 fm−1 [13]. Information on the
pd → pnp mechanism and the off-shell properties of the
NN system is contained in the matrix elements As,t and
their ratio [14]:

ζ =
|As|2
|At|2 . (3)

The pd → (pp)n data, obtained at ANKE/COSY [10], are
presented as cms cross-sections

dσ
dΩn

=
1

∆Ωn

∫ Emax

0

dEpp

∫ ∫
m

d3σ

dk2dΩn
dΩn, (4)

integrated over Epp from 0 to 3 MeV and averaged over
the neutron cms angle θ∗n = 172◦ − 180◦, where

d3σ

dk2dΩn
=

1
(4π)5

pn

pi

k

s
√
m2 + k2

1
2

∫ ∫
dΩk|Mfi|2 (5)

and ∆Ωn is the neutron solid angle. In eq. (5) pi and pn

are the cms momenta of the incident proton and the final
neutron, respectively; Mfi is the full matrix element of
the reaction. Due to the isospin invariance the following
relation holds in the singlet cannel

dσ
dΩ∗ (pd → (np)sp) =

1
2

dσ
dΩ∗ (pd → (pp)sn). (6)

Using the Fäldt-Wilkin extrapolation [15] for the bound
and the scattering S-wave functions in the triplet state at

short pn distances r < 1 fm, and taking into account the
short-range character of the interaction mechanism, the
triplet cross-section pd → (pn)tn is obtained as

dσt

dΩ∗ =
pf

pi
f2(k2)

dσ
dΩ∗ (pd → dp), (7)

where
f2(k2) =

2πm

αt(k2 + α2
t )

(8)

and dσ/dΩ∗ is the pd → pd cms cross-section. After in-
tegration over Epp the triplet cross-section (7) takes the
form

dσt

dΩ∗ =
pf

pi
Z

dσ
dΩ∗ (pd → dp), (9)

where

Z =
1

2π
2
αt

{
kmax − αt arctan

(
kmax

αt

)}
. (10)

On the other side, the triplet (t) and singlet (s) cross-
sections can be obtained by integration of eq. (1) over
Epp. K, |As|2, and |At|2, being very smooth functions of
Epp, can be assumed as constant. A ratio of the integrals
R = ys/yt can be defined, where

ys,t =
∫ k2

max

0

FSIs,t(k) k dk2. (11)

With this ratio one finally gets the singlet-to-triplet ratio
ζ defined by eq. (3) as

ζ =
1

2RZ

dσ
dΩ∗ (pd → (pp)sn)

dσ
dΩ∗ (pd → dp)

. (12)

It is obvious that ζ is not a direct ratio of the pd → (pp)n
and pd → dp cross-sections, but contains also the addi-
tional factor 1/(2RZ).

3 Results and discussion

For the numerical calculations of ζ, defined by eq. (12),
we use the experimental data on the pd → dp cross-
section [16] and the new ANKE/COSY data for the pd →
(pp)n reaction [10]. From eqs. (2) and (11) and with the
values for αi and βi, given above, we get Z = 0.101 and
R = 2.29 for Emax

pp = 3 MeV. With these numbers and as-
suming systematic uncertainties of 10% for both the pd →
dp cross-section and the Fäldt-Wilkin ratio (7), we obtain
ζ = (2.3± 0.5)% for 0.6, ζ = (1.6± 0.3)% for 0.7, and ζ =
(2.1±1.2)% for 1.9 GeV beam energy. We find the surpris-
ing fact that ζ is constant within the errors over the whole
investigated beam energy range from 0.6 to 1.9 GeV.

The present, model-independent small result for ζ can
be compared with ζ < 5%, obtained recently [14] for
the pd → (pn)p reaction data, measured exclusively at
585 MeV and cms angle θ∗ = 92◦ [17]. A similar, small
value for the singlet admixture of a few percent was found
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Fig. 1. Experimental cross-section of the reactions pd →
dp [16] and pd → (pp)n [10] as a function of the beam en-
ergy in comparison with ONE + SS + ∆ model calculations
(thick full lines) using the RSC potential with cutoff momen-
tum Λπ = 0.53 GeV/c in the πNN and πN∆ vertices [4].
Inclusion of rescattering in the initial and final states, taken
into account within the ONE(DWBA) + SS + ∆ model [8],
yields the dash-dotted line. The dotted line results from a cal-
culation using only the ∆ mechanism with cutoff momentum
Λπ = 0.7 GeV/c.

for the reaction pp → pnπ+ in the FSI region at beam en-
ergies of 492 MeV [18] and 800 MeV [19], too. The small-
ness of the singlet contribution in the ∆-region of the re-
action pd → (pn)p can be explained by dominance of the
OPE mechanism with the subprocess pp → (pn)sπ

+ [14].
The singlet-to-triplet ratio can be estimated as ζth =

RS × RI × RX . Here RS = 1/3 is the spin statistical
factor. The isospin ratio RI is 1 for the ONE and 1/9
for both the ∆ mechanism and the vector meson-nucleon
exchanges [7]. RX is the ratio of the spatial singlet and
triplet amplitudes. For the ∆ mechanism, it reflects the
difference of the 1S0 and 3S1 wave functions at r < 1 fm.
Since ζ, according to eqs. (1) and (2), does not contain the
FSI factor, RX is ≈ 1 for the ∆ amplitude. For the ONE
it is ≈ 0.5 due to the contribution of the D-wave in the
triplet and its absence in the singlet state. The calculation
using eqs. (5) and (4) with the Reid-Soft-Core (RSC) NN
potential [20] gives ζONE = 5–8% for Tp = 1.4–1.9 GeV
for the ONE which is 3 to 4 times the experimental value.
For the ∆ mechanism this ratio ζ∆ = RS × RI = 1/27 is
in better agreement with the experimental value.

Calculations [4,8] with use of the RSC NN potential
and the ONE + SS + ∆ model [2,5], including single
pN scattering (SS), describe the pd → (pp)n cross-section
data for the beam energies 0.6 and 0.7 GeV, as is seen in
fig. 1. In this region the ∆ mechanism dominates due to
the nearby minimum of the ONE cross-section. At higher

energies the strong disagreement with the data is obvious.
The data show no indication of the dip around 0.8 GeV,
and for Tp > 1.3 GeV they are by a factor 2 to 4 below
the prediction. A very similar discrepancy is observed for
pd → dp backward elastic scattering, as can be seen from
the upper part of fig. 1. Both the earlier pd → dp and
the recent pd → (pp)n data show that in the until now
used model the contribution by the ONE, dominating for
Tp > 1.3 GeV, is too strong. On the other side, a calcula-
tion, using only the ∆ mechanism with a cutoff momentum
Λπ = 0.7 GeV/c allows one to describe the pd → (pp)n
data for Tp > 0.7 GeV. This mechanism does not involve
such high-momentum components of the NN wave func-
tion as the ONE. A possible conclusion would be that
the deuteron and the pp(1S0) system at short NN dis-
tances are softer than modeled by the RSC NN potential.
As one should note, the assumption about softness of the
deuteron at short NN distances is supported by i) a rather
successful description of the pd → dp cross-section within
the OPE model only [21,5], and ii) the strong disagree-
ment between the ONE calculations and the T20 data [22].
Detailed analyses of this conjecture are in progress.
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